

Year 12 HSC Assessment Task 1 Mathematics Extension 2 Week 9A Monday 1st Dec 2014

Name:		
Teacher:		

- Attempt **ALL** questions.
- Marks may be deducted for insufficient or illegible work.
- Only Board approved calculators (excluding graphic calculators) may be used.
- Total possible mark is **32**.
- Begin each question on a new sheet of paper.
- TIME ALLOWED: 40 minutes plus 2 minutes reading time.

SECTION I – Multiple Choice (4 marks)

1 Which expression is a correct factorization of $z^3 - i$?

(A)
$$(z-i)(z^2+iz+1)$$

(B)
$$(z+i)(z^2-iz-1)$$

(C)
$$(z+1)(z-i)^2$$

(D)
$$(z+1)^3$$

The complex number W is a root of the equation $z^3 + 1 = 0$. Which of the following is FALSE.

(A)
$$\overline{W}$$
 is also a root

(B)
$$W^2 + 1 - W = 0$$

(C)
$$\frac{1}{W}$$
 is also a root.

(D)
$$(W-1)^2 = -1$$

By de Moivre's theorem, the value of $(1+i)^{10}$ is: 3

- (A) purely real
- (B) purely imaginary
- a real multiple of (1+i)(C)
- an imaginary multiple of (1+i)(D)

4

The Argand diagram above shows the complex number z. By considering the modulus and argument, which diagram below best represents the complex number $\frac{i}{z}$?

(B)

(C)

(D)

SECTION II

Question 5 (14 marks) Use a SEPARATE writing booklet.

Marks

(a) Consider the complex numbers z = 2 + 3i and W = -1 + 2i.

Express each of the following in the form x + iy, where x and y are real numbers.

(i)
$$z + \overline{W}$$

(ii)
$$z^2$$

(iii)
$$\frac{z}{w}$$

(b) Find the square roots of 21 - 20i in the form a + ib where a and b are real numbers.

In the diagram the vertices of a triangle ABC are represented by the complex numbers z_1 , z_2 and z_3 respectively. The triangle is isosceles and right-angled at B.

(i) Show that
$$(z_1 - z_2)^2 = -(z_3 - z_2)^2$$
.

(ii) Suppose D is the point such that ABCD is a square. Find the complex number, expressed in terms of z_1 , z_2 and z_3 that represents D.

(d) Use de Moivres Theorem, or otherwise, show that for every positive integer n

$$(1+i)^n + (1-i)^n = 2(\sqrt{2})^n \cos \frac{n\rho}{4}$$
.

(Do not use Mathematical Induction)

(e) Prove using the principle of Mathematical induction that,

If
$$T_1 = 1$$
, $T_2 = 5$ and $T_n = 5T_{n-1} - 6T_{n-2}$ for $n \cdot 3 \cdot 3$,

show
$$T_n = 3^n - 2^n$$
 for $n^{3} 1$

End of Question 5

Question 6 (14 marks) Use a SEPARATE writing booklet.

Marks

(a) Sketch the region in the Argand diagram where

3

$$|z-1-i| \le 1$$
 and $-\frac{\rho}{4} \le Arg(z-1-i) \le \frac{\rho}{2}$

- (b) Find the fourth roots of $-8 + 8i\sqrt{3}$ and plot the roots on an Argand diagram.
- (c) The inequality $x > \ln(1+x)$ holds for all real x > 0. (Do NOT prove this.)

Use this result and the method of mathematical induction to prove that for all positive integers n,

$$\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} > \ln(n+1).$$

(d) Let the points $A_1, A_2, ..., A_n$ represent the *n*th roots of unity, $W_1, W_2, ..., W_n$, and suppose *P* represents any complex number *z* such that |z| = 1.

(i) Prove that
$$W_1 + W_2 + ... + W_n = 0$$
.

(ii) Show that
$$(PA_i)^2 = (z - W_i)(\overline{z} - \overline{W_i})$$

for $i = 1, 2, ..., n$.

(iii) Prove that
$$\bigotimes_{i=1}^{n} (PA_i)^2 = 2n$$

End of paper

2014 Year 12 Mathematics Extension 2 HSC Task 1 Solutions

Suggested Solution (s)	Comments	Suggested Solution (s)	Comments
SECTION! 1. $z^3 + (\bar{1})^3$ = $(z + \bar{i})(z^2 - \bar{i}z - i)$ 2. $z^3 + 1$ = $(z + i)(z^2 - z + i)$ (o $\omega^3 + 1 = (\omega + i)(\omega^2 - \omega + i)$ Now $(\omega - i)^2$ = $\omega^2 - 2\omega^2 + 1$ = $-\omega$ 3. $(1 + \bar{i})^{10} = (\sqrt{2} \cos \sqrt{2})^{10}$ = $32 \cos \sqrt{2}$ = $32 \cos \sqrt{2}$ = $32 \cos \sqrt{2}$ = $32 \cos \sqrt{2}$		SECTION I Question 5 a) (i) $2-3\overline{\lambda} + (-1-2\lambda)$ = $1+\overline{\lambda}$ ii) $Z^2 = (2+3\overline{\lambda})^2$ = $-5+12\overline{\lambda}$ $\overline{\lambda}$ = $2+3\overline{\lambda}$ $-1-2\overline{\lambda}$ = $4-7\overline{\lambda}$ = $4-7\overline{\lambda}$ = $4-7\overline{\lambda}$ = $4-7\overline{\lambda}$ b) Let $Z^2 = 21-20\overline{\lambda}$ With $Z = a+b\overline{\lambda}$ So $(a+b\overline{\lambda})^2 = 21-20\overline{\lambda}$ $a^2-b^2 = 21$	
4. Arg $(\frac{1}{2}) = -\alpha rg^2$ $Arg (\frac{1}{2}) = \frac{\pi}{2} - \alpha rg^2$ D.		$a^{2}-b^{2} = 21$ $ab = -10$ Also $a^{2}+b^{2} = (a+b\bar{a})^{2} $ $= 21-20\bar{a} $ $= 29$ Solving Simultaneously $q = 5 b = -2$ $a = -5 b = 2$	

$$Z = \pm (5-2i)$$

2014 Year 12 Mathematics Extension 2 HSC Task 1 Solutions

$ (c)(i) \overrightarrow{BA} = Z_1 - Z_2 $ $ \mathscr{BC} = Z_3 - Z_2 $	(e) $T_{i=1}$, $T_{2}=5$	
Rotating \overrightarrow{BC} anticlockaise by 90° gives \overrightarrow{BA} . Hence $Z_1 - Z_2 = i (Z_3 - Z_2)$ Squaring both sides gives $(Z_1 - Z_2)^2 = -(Z_3 - Z_2)^2$,	$T_{K-1} = 3^{K-1} - 2^{K-1}$ $T_{K} = 3^{K-1} - 2^{K-1}$ $RTP T_{K+1} = 5T_{K} - 6T_{K}$ NoW $5(3^{K} - 2^{K}) - b(3^{K-1} - 2^{K})$ $= 5x3^{K} - 6x3^{K-1} - 5x2^{K} + 6x$) 2 ^{K-1}
(ii) $\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD}$. But $\overrightarrow{AD} = \overrightarrow{BC}$. $\overrightarrow{S} = \overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BC}$ $= Z_1 + (Z_2 - Z_2)$ So D is represented by the complex number	$= 5 \times 3^{K} - 2 \times 3^{K} - 5 \times 2^{K}$ $= 3 \times 3^{K} - 2 \times 2^{K}$ $= 3^{K+1} - 2^{K+1}$ $= 3^{K+1} - 2^{K+1}$ $\boxed{Qvestion 6}$ a) $ Z - (1 + \bar{A}) \le 1$	
$Z_{1} - Z_{2} + Z_{3}$ (d) To show (1+i)"+(1-i)" $= 2(\sqrt{2})^{n} \cos \frac{n\pi}{4}$ $= 2(\sqrt{2})^{n} \cos \frac{n\pi}{4}$ $= 2^{\frac{n\pi}{2}} \left[\cos \frac{n\pi}{4} + \cos \left(-\frac{n\pi}{4} \right) + \sin \left(-\frac{n\pi}{4} \right) + \sin \left(-\frac{n\pi}{4} \right) + \sin \left(-\frac{n\pi}{4} \right) \right]$ $= 2 \cdot 2^{\frac{n\pi}{2}} \left[\cos \frac{n\pi}{4} + \cos \left(-\frac{n\pi}{4} \right) + \sin \left(-\frac{n\pi}{4} \right) + \sin \left(-\frac{n\pi}{4} \right) \right]$ $= 2 \cdot 2^{\frac{n\pi}{2}} \left[\cos \frac{n\pi}{4} + \cos \left(-\frac{n\pi}{4} \right) + \sin \left(-\frac{n\pi}{4} \right) + \sin \left(-\frac{n\pi}{4} \right) \right]$		

= 2 (1) " Cos 4

2014 Year 12 Mathematics Extension 2 HSC Task 1 Solutions

	Comments	Suggested Solution (s)	Comments
b) $Z_{K} = 16 \text{ Cis} \left(\frac{2\pi}{3} + 2K\pi \right)$ $K = 0, 1, 2, 3$ $= 16 \text{ Cis} \left(\frac{2\pi}{12} + 6\pi K \right)$ $= 16 \text{ Cis} \left(\frac{2\pi}{12} + 6\pi K \right)$ $= 16 \text{ Cis} \left(\frac{3\pi}{12} + 2K\pi \right)$ $= $		c) Let p(n) be the given proposition It \(\frac{1}{2} \tau \frac{1}{3} \tau \cdots \frac{1}{1} \rightarrow \frac{1} \rightarrow \frac{1}{1} \rightarrow \frac{1}{1} \rightar	(+1) (+1)

2014 Year 12 Mathematics Extension 2 HSC Task 1 Solutions